Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2.
|
|
- Ασπασία Βιτάλης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Σπιν Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική στροφορμή ˆ J με συνιστώσες Jˆ, Jˆ, J ˆ, που ικανοποιούν της άλγεβρα της στροφορμής, για να εξετάσουμε την περίπτωση j. Αυτή είναι η περίπτωση του σπιν s. Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου, δηλαδή όλα τα στοιχειώδη σωμάτια ύλης, έχουν σπιν. Αυτό σημαίνει ότι οι δομικές μονάδες της ύλης έχουν σπιν. Οι εξισώσεις ιδιοτιμών των τελεστών ˆ, s, s m s s s m () ˆ s, m m s, m () s s s Εφόσον s, m s s, Ŝ και ˆ γράφονται. Επομένως, οι κοινές ιδιοκαταστάσεις των τελεστών και ˆ είναι οι δύο ιδιοκαταστάσεις, και,. Οι δύο αυτές ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν. Συνήθως, η ιδιοκατάσταση, Ŝ, δηλαδή η ιδιοκατάσταση με ιδιοτιμή του ˆ, αναφέρεται ως σπιν-πάνω και συμβολίζεται με ή, ενώ η ιδιοκατάσταση,, δηλαδή η ιδιοκατάσταση με ιδιοτιμή του ˆ και συμβολίζεται με ή., αναφέρεται ως σπιν-κάτω. Πίνακες του σπιν Πίνακες του Pauli Θα κατασκευάσουμε τους πίνακες,,, και αντίστοιχους τελεστές ˆ, ˆ, ˆ, και τελεστών Ŝ και ˆ, δηλαδή στη βάση,,,. που αναπαριστούν τους Ŝ στη βάση των κοινών ιδιοκαταστάσεων των
2 Θα χρησιμοποιήσουμε τις γενικές σχέσεις Jˆ j, m j j m m j, m j j m m j, m ˆ i J j, m j j mm j, m j j mm j, m που αποδείξαμε στην άσκηση της προηγούμενης ανάρτησης («Λυμένες ασκήσεις στροφορμής (Ι)»), οι οποίες ισχύουν για κάθε γενική στροφορμή. Για την περίπτωση όπου j, οι σχέσεις αυτές γράφονται ˆ 3 3, ms ms ms, ms ms ms, ms 4 4 () ˆ i 3 3, ms ms ms, ms ms ms, ms 4 4 () Για ms και, η () μάς δίνει ˆ 3 3 3,,,, ms ˆ,, (3) Και ˆ 3 3 3,, ms,, 4 4 ˆ,, (4) Έτσι, αν η ιδιοκατάσταση, (σπιν-πάνω) είναι το πρώτο διάνυσμα βάσης και η ιδιοκατάσταση, (σπιν-κάτω) είναι το δεύτερο διάνυσμα βάσης, τα στοιχεία του πίνακα είναι, σύμφωνα και με τις (3) και (4), ˆ,,,,
3 ˆ,,,, ˆ,,,, ˆ,,,, Επομένως, ο πίνακας που αναπαριστά τον τελεστή ˆ, δηλαδή τη -συνιστώσα του τελεστή του σπιν Ŝ, στη βάση των κοινών ιδιοκαταστάσεων των τελεστών Ŝ και ˆ, είναι (5) Με τον ίδιο τρόπο, κατασκευάζουμε τον πίνακα Για ms και, η () μάς δίνει. ˆ i 3 3 i,,, ms, 4 4 ˆ i,, (6) Και ˆ i 3 3,, ms, 4 4 i,
4 ˆ i,, (7) Επομένως, τα στοιχεία του πίνακα ˆ i,,,, ˆ i,,,, i ˆ i,,,, i ˆ i,,,, Επομένως, ο πίνακας είναι, σύμφωνα και με τις (6) και (7), που αναπαριστά τον τελεστή ˆ, δηλαδή την -συνιστώσα του τελεστή του σπιν Ŝ, στη βάση των κοινών ιδιοκαταστάσεων των τελεστών Ŝ και ˆ, είναι i i i i i (8) i Στη βάση των κοινών ιδιοκαταστάσεων των τελεστών Ŝ και ˆ, ο πίνακας πρέπει να είναι διαγώνιος, με στοιχεία τις ιδιοτιμές του τελεστή ˆ, δηλαδή Πράγματι, από την εξίσωση ιδιοτιμών του τελεστή ˆ έχουμε ˆ, m m, m s s s Επομένως ˆ,, (9) ˆ,, () Άρα, τα στοιχεία του πίνακα είναι, σύμφωνα και με τις (9) και (),.
5 ˆ,,,, ˆ,,,, ˆ,,,, ˆ,,,, Επομένως, ο πίνακας που αναπαριστά τον τελεστή ˆ, δηλαδή τη -συνιστώσα του τελεστή του σπιν Ŝ, στη βάση των κοινών ιδιοκαταστάσεων των τελεστών Ŝ και ˆ, είναι () Οι (5), (8), και () μάς δίνουν τους πίνακες που αναπαριστούν τους τελεστές ˆ, ˆ, ˆ, δηλαδή τις τρεις συνιστώσες του σπιν, στη βάση των κοινών ιδιοκαταστάσεων των τελεστών Ŝ και ˆ. Παρατηρήστε ότι και οι τρεις πίνακες είναι ερμιτιανοί, όπως πρέπει, αφού αναπαριστούν ερμιτιανούς τελεστές. Οι συνιστώσες του σπιν είναι παρατηρήσιμα μεγέθη, επομένως οι αντίστοιχοι τελεστές ˆ, ˆ, ˆ είναι ερμιτιανοί. Παρατηρήστε επίσης ότι τα στοιχεία του πίνακα είναι πραγματικά, ενώ του είναι φανταστικά (το μηδέν ανήκει και στους πραγματικούς και στους φανταστικούς αριθμούς, επομένως μπορούμε να το θεωρήσουμε και πραγματικό και φανταστικό αριθμό). Μπορούμε να γράψουμε τις (5), (8), και () ως () (3) όπου (4)
6 , i i, Οι πίνακες,, είναι οι πίνακες του Pauli, και όπως βλέπουμε, είναι ερμιτιανοί. Ο πίνακας, που αναπαριστά τον τελεστή εξίσωση ιδιοτιμών του οποία για ms και 3 ˆ,, (5) 4 Ŝ, δηλαδή από την εξίσωση, μάς δίνει, αντίστοιχα, Ŝ κατασκευάζεται εύκολα από την ˆ 3, ms, m 4 s, η 3 ˆ,, (6) 4 Επομένως ˆ ˆ ˆ ˆ Άρα ˆ 3,, 4 3, ˆ,,, 4 3, ˆ,,, 4 ˆ 3,, 4 3 (7) 4 Όπως αναμέναμε, ο Ŝ. είναι διαγώνιος, με στοιχεία την ιδιοτιμή, 3 4, του τελεστή. Καταστάσεις του σπιν Σπίνορες (pinors) Όπως αναφέραμε, οι ιδιοκαταστάσεις των τελεστών,,, Ŝ και ˆ, δηλαδή το σύνολο, αποτελεί ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν. Κατά συνέπεια, μια τυχαία κατάσταση του σπιν, ας τη συμβολίσουμε με
7 , θα γράφεται ως γραμμικός συνδυασμός των δύο ιδιοκαταστάσεων,, δηλαδή a, b, (), όπου οι συντελεστές του αναπτύγματος, ab,, είναι μιγαδικοί αριθμοί, αφού ο χώρος των καταστάσεων του σπιν είναι ένας μιγαδικός διανυσματικός χώρος, και ειδικότερα είναι ένας μιγαδικός χώρος Hilbert. Αν εφαρμόσουμε τη συνθήκη κανονικοποίησης στην κατάσταση, θα πάρουμε * *,,,, Η βάση,,, είναι ορθοκανονική a b a b a b a b () και Τότε, από την () βλέπουμε ότι το πλάτος πιθανότητας να μετρήσουμε τιμή για τη -συνιστώσα του σπιν είναι μετρήσουμε τιμή, a, ενώ το πλάτος πιθανότητας να για τη -συνιστώσα του σπιν είναι, b., το πλάτος πιθανότητας το σύστημά μας (το σωμάτιο με σπιν ) να βρεθεί, μετά από μια μέτρηση της -συνιστώσας του σπιν του, στην ιδιοκατάσταση, (σπινπάνω) είναι a, ενώ το πλάτος πιθανότητας το σύστημά μας να βρεθεί, μετά από μια μέτρηση της -συνιστώσας του σπιν του, στην ιδιοκατάσταση, (σπιν-κάτω) είναι b. Οι αντίστοιχες πιθανότητες είναι κανονικοποίησης μάς εξασφαλίζει ότι a b. a και b, και η συνθήκη Θέλουμε τώρα να αναπαραστήσουμε τα διανύσματα βάσης, (σπιν-πάνω) και, (σπιν-κάτω), καθώς επίσης και την τυχαία κατάσταση, με πίνακες.
8 Υπενθυμίζουμε ότι θεωρούμε το διάνυσμα, ως πρώτο και το διάνυσμα, ως δεύτερο. Αυτή είναι μια αυθαίρετη, πλην όμως αναγκαία, σύμβαση, αφού οι αναπαραστάσεις εξαρτώνται από τη σειρά επιλογής των διανυσμάτων βάσης. Επειδή,,,, αναπαριστούμε το διάνυσμα, με το διάνυσμα-στήλη (ή πίνακα-στήλη), και γράφουμε,. Βάζουμε βέλος για να δηλώσουμε ότι πρόκειται για αναπαράσταση του διανύσματος, από το στοιχείο. Με την ίδια λογική, επειδή,,,, αναπαριστούμε το διάνυσμα, με το διάνυσμα-στήλη (ή πίνακα-στήλη), και γράφουμε,. Έτσι, από την () συμπεραίνουμε ότι η τυχαία κατάσταση αναπαρίσταται από το a a διάνυσμα-στήλη (ή πίνακα-στήλη), δηλαδή. b b Θυμίζουμε ότι οι αναπαραστάσεις αυτές γίνονται στη βάση των κοινών ιδιοκαταστάσεων των τελεστών Ŝ και ˆ. Σημειώσεις. Ως γενικός κανόνας, τα ket αναπαριστώνται από διανύσματα-στήλες (ή πίνακεςστήλες), ενώ τα bra αναπαριστώνται από διανύσματα-γραμμές (ή πίνακες-γραμμές), δηλαδή... N και * * *... N όπου N είναι η διάσταση του μιγαδικού χώρου Hilbert στον οποίο ανήκει η κατάσταση. Αν η είναι κανονικοποιημένη, τότε
9 N * * *... N i... n N. Τα διανύσματα-στήλες που αναπαριστούν τις καταστάσεις του σπιν ονομάζονται a σπίνορες (spinors)., τα στοιχεία,, και είναι σπίνορες. b 3. Εύρεση των ιδιοτιμών και των ιδιοδιανυσμάτων των πινάκων του σπιν Με τη βοήθεια της σχέσης (5) της ενότητας, η εξίσωση ιδιοτιμών του πίνακα γράφεται () Το, ως ιδιοδιάνυσμα, πρέπει να είναι γραμμικά ανεξάρτητο, επομένως δεν μπορεί να είναι μηδέν. Έτσι, το ομογενές σύστημα () πρέπει να έχει μη μηδενική λύση, άρα Από την προηγούμενη εξίσωση παίρνουμε Η τελευταία σχέση μάς λέει ότι οι ιδιοτιμές του είναι, κάτι που αναμέναμε αφού αναπαριστά τον τελεστή ˆ, τη -συνιστώσα του σπιν που, όπως η - συνιστώσα, έχει ιδιοτιμές. Ας βρούμε τα αντίστοιχα ιδιοδιανύσματα. Για, το σύστημα () γράφεται
10 Επομένως, το ιδιοδιάνυσμα είναι το. Εφαρμόζουμε τη συνθήκη κανονικοποίησης, και παίρνουμε * * Επιλέγουμε, λαμβάνοντας υπόψη τη συμμετρία φάσης των κβαντικών καταστάσεων, Έτσι, λοιπόν, το κανονικοποιημένο ιδιοδιάνυσμα του πίνακα, ιδιοτιμής, είναι το. Αυτό το ιδιοδιάνυσμα αναπαριστά, στη βάση των κοινών ιδιοκαταστάσεων των τελεστών Ŝ και ˆ, την ιδιοκατάσταση όπου η -συνιστώσα του σπιν είναι. Αν συμβολίσουμε αυτήν την ιδιοκατάσταση με ; (σπιν-πάνω στον άξονα ), τότε ; () Για να βρούμε το ιδιοδιάνυσμα ιδιοτιμής μπορούμε να κάνουμε τα ίδια. Ωστόσο, μπορούμε να το γράψουμε αμέσως αν σκεφτούμε ότι πρέπει να είναι ορθογώνιο στο ιδιοδιάνυσμα. Ο πίνακας είναι ερμιτιανός, επομένως τα ιδιοδιανύσματά του είναι μεταξύ τους κάθετα. Επειδή ο χώρος μας είναι διδιάστατος, υπάρχει μόνο μία κάθετη διεύθυνση σε μια δοθείσα. Επομένως, με εξαίρεση μια σταθερή φάση, που είναι απόρροια της συμμετρίας φάσης των κβαντικών καταστάσεων, το κανονικοποιημένο ιδιοδιάνυσμα ιδιοτιμής το. Ας το ελέγξουμε. Είναι είναι
11 Επομένως, το είναι το κανονικοποιημένο ιδιοδιάνυσμα του πίνακα που αντιστοιχεί στην ιδιοτιμή, και αναπαριστά, στη βάση των κοινών ιδιοκαταστάσεων των τελεστών Ŝ και ˆ, την ιδιοκατάσταση όπου η -συνιστώσα του σπιν είναι. Αν συμβολίσουμε αυτήν την ιδιοκατάσταση με ; (σπιν-κάτω στον άξονα ), τότε ; (3) Για τον πίνακα, με τη βοήθεια της σχέσης (8) της ενότητας, η εξίσωση ιδιοτιμών του γράφεται i i (4) i i Εφόσον το είναι ιδιοδιάνυσμα, πρέπει να είναι γραμμικά ανεξάρτητο, επομένως δεν μπορεί να είναι μηδέν. Έτσι, το ομογενές σύστημα (4) πρέπει να έχει μη μηδενική λύση, άρα i i i Η τελευταία σχέση μάς λέει ότι οι ιδιοτιμές του είναι, κάτι που αναμέναμε αφού αναπαριστά τον τελεστή ˆ, την -συνιστώσα του σπιν που, όπως η - συνιστώσα, έχει ιδιοτιμές. Για, το σύστημα (4) γράφεται i i i i i i i i i i i
12 Επομένως, το ιδιοδιάνυσμα είναι το. i Εφαρμόζουμε τη συνθήκη κανονικοποίησης, και παίρνουμε i Επιλέγουμε, λαμβάνοντας υπόψη τη συμμετρία φάσης των κβαντικών καταστάσεων, Έτσι, το κανονικοποιημένο ιδιοδιάνυσμα του πίνακα, ιδιοτιμής, είναι το. Αυτό το ιδιοδιάνυσμα αναπαριστά, στη βάση των κοινών ιδιοκαταστάσεων i των τελεστών Ŝ και ˆ, την ιδιοκατάσταση όπου η -συνιστώσα του σπιν είναι. Αν συμβολίσουμε αυτήν την ιδιοκατάσταση με ; (σπιν-πάνω στον άξονα ), τότε ; (5) i Μπορούμε να γράψουμε αμέσως το ιδιοδιάνυσμα ιδιοτιμής, αν σκεφτούμε ότι πρέπει να είναι κάθετο, επομένως είναι το. Πράγματι, είναι i i i i i i i i i Αυτό είναι το κανονικοποιημένο ιδιοδιάνυσμα του πίνακα με ιδιοτιμή, δηλαδή αναπαριστά, στη βάση των κοινών ιδιοκαταστάσεων των τελεστών Ŝ και ˆ, την ιδιοκατάσταση όπου η -συνιστώσα του σπιν είναι άξονα ). Επομένως (σπιν-κάτω στον ; i (6) Σημείωση
13 Η «ελευθερία» μιας σταθερής φάσης που συνοδεύει τις κβαντικές καταστάσεις, η οποία είναι απόρροια της συμμετρίας φάσης, δηλαδή του γεγονότος ότι οι καταστάσεις και ep i (όπου μια σταθερή γωνία) είναι φυσικά ισοδύναμες, ισχύει και για τις αναπαραστάσεις των κβαντικών καταστάσεων. Επομένως, τα ιδιοδιανύσματα των πινάκων του σπιν επιλέγονται κι αυτά με την απροσδιοριστία μιας σταθερής φάσης. i Έτσι, για παράδειγμα, αντί του, θα μπορούσαμε να επιλέξουμε το i για ιδιοδιάνυσμα του με ιδιοτιμή. Πράγματι, είναι i i i i i i i Επίσης είναι i 3 i i i ep i i 3, τα δύο ιδιοδιανύσματα συνδέονται με μια σταθερή φάση. Όσον αφορά τον πίνακα, αυτός είναι διαγώνιος, όπως βλέπουμε από τη σχέση () της ενότητας, κάτι αναμενόμενο, αφού η βάση της αναπαράστασης είναι τα ιδιοδιανύσματα του τελεστή ˆ (και του Ŝ ). Επομένως, οι ιδιοτιμές του πίνακα είναι τα στοιχεία της διαγωνίου του, δηλαδή, και τα ιδιοδιανύσματα του πίνακα είναι οι αναπαραστάσεις των ιδιοκαταστάσεων του τελεστή ˆ, δηλαδή των ιδιοκαταστάσεων,, που αντιστοιχεί στην ιδιοτιμή (σπιν-πάνω στον άξονα ), και,, που αντιστοιχεί στην ιδιοτιμή (σπιν-κάτω στον άξονα ). Ακολουθώντας τον συμβολισμό που χρησιμοποιήσαμε για τις ιδιοκαταστάσεις των τελεστών ˆ και ˆ, θα συμβολίσουμε με ; την ιδιοκατάσταση, και με ; την ιδιοκατάσταση,. Όπως είδαμε στην ενότητα, η ιδιοκατάσταση, αναπαρίσταται από τον σπίνορα, και η ιδιοκατάσταση, από τον σπίνορα, δηλαδή ; (7)
14 ; (8) Σημείωση Το είναι το κανονικοποιημένο ιδιοδιάνυσμα του πίνακα ιδιοτιμή και το είναι το κανονικοποιημένο ιδιοδιάνυσμα του πίνακα που αντιστοιχεί στην που αντιστοιχεί στην ιδιοτιμή. Αν δεν έχετε πειστεί, μπορείτε εύκολα να το ελέγξετε! 4. Σε μια τυχαία κατάσταση του σπιν, υπολογισμός των πιθανοτήτων μέτρησης των ιδιοτιμών των τριών συνιστωσών του Για μια τυχαία κατάσταση πιθανότητες: i) η -συνιστώσα του σπιν έχει τιμή του σπιν, θα υπολογίσουμε τις ακόλουθες ii) η -συνιστώσα του σπιν έχει τιμή iii) η -συνιστώσα του σπιν έχει τιμή iv) η -συνιστώσα του σπιν έχει τιμή v) η -συνιστώσα του σπιν έχει τιμή vi) η -συνιστώσα του σπιν έχει τιμή Αν για τις ιδιοκαταστάσεις των τριών συνιστωσών του τελεστή του σπιν χρησιμοποιήσουμε τον συμβολισμό της ενότητας 3, μπορούμε να γράψουμε τα πλάτη των πιθανοτήτων i vi ως εξής: ;, ;, ;, ;, ;, και ; Στις ενότητες και 3, υπολογίσαμε τις αναπαραστάσεις (σπίνορες) όλων των εμπλεκόμενων καταστάσεων στη βάση των κοινών ιδιοκαταστάσεων των τελεστών Ŝ και ˆ. Μπορούμε τώρα να χρησιμοποιήσουμε τους σπίνορες που βρήκαμε για να υπολογίσουμε τα πλάτη και τις ζητούμενες πιθανότητες. Σημείωση Όπως γνωρίζουμε από τη διανυσματική ανάλυση, το εσωτερικό γινόμενο δύο διανυσμάτων,, δεν εξαρτάται από το σύστημα συντεταγμένων που χρησιμοποιούμε για να το υπολογίσουμε. Μπορούμε να το υπολογίσουμε σε όποιο σύστημα συντεταγμένων μάς βολεύει, ή ακόμα και αφηρημένα, δηλαδή χωρίς να «καταφύγουμε» σε κάποιο σύστημα συντεταγμένων.
15 Το ίδιο ισχύει και για τα εσωτερικά γινόμενα μεταξύ κβαντικών καταστάσεων, όπου τώρα το σύστημα συντεταγμένων είναι η βάση που χρησιμοποιούμε, στον χώρο των καταστάσεων, για να εκφράσουμε να αναπαραστήσουμε τις κβαντικές καταστάσεις (ή και τους τελεστές) που μας ενδιαφέρουν. Πριν προχωρήσουμε, ας ξαναγράψουμε, συγκεντρωτικά, τους σπίνορες που μας ενδιαφέρουν, όπως τους υπολογίσαμε στις ενότητες και 3. a, με a b ; ; ; i ; i ; ; b Επομένως, τα ζητούμενα πλάτη είναι a a b ; b a ab ; b a a ib ; i b a a ib ; i b ; a a b ; a b b Σημείωση
16 Θυμίζουμε ότι αν Έτσι, οι ζητούμενες πιθανότητες είναι, τότε * * i) P ; ; ii) P ; ; a b ab iii) P ; ; a ib a ib P ; ; iv) v) P ; ; a vi) P ; ; b Παρατηρούμε ότι a ba b a ba b * * * * * a b a b P; P; * * * * a b ab a b a b ab a b a b a b P P ; ; Επίσης, έχουμε a iba ib a iba ib * * * * a ib a ib P ; P ; * * * * a i b iab ia b a i b iab ia b a b a b P P ; ; Και P ; P ; a b Σε κάθε έναν από τους τρεις άξονες, το σπιν έχει δύο τιμές, τις ιδιοτιμές του αντίστοιχου τελεστή, δηλαδή (σπιν-πάνω) και (σπιν-κάτω). Επομένως, σε
17 κάθε άξονα, το άθροισμα της πιθανότητας να μετρήσουμε σπιν-πάνω και της πιθανότητας να μετρήσουμε σπιν-κάτω πρέπει να είναι, όπως και είναι. Σπύρος Κωνσταντογιάννης Φυσικός, M.c.
Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου,
Σπιν / Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική r στροφορμή Jˆ με συνιστώσες Jˆ x, Jˆ
Λυμένες ασκήσεις στροφορμής
Λυμένες ασκήσεις στροφορμής Θα υπολογίσουμε τη δράση των τελεστών κλίμακας J ± σε μια τυχαία ιδιοκατάσταση j, m των τελεστών J και Jˆ. Λύση Δείξαμε ότι η κατάσταση Jˆ± j, m είναι επίσης ιδιοκατάσταση των
Δύο διακρίσιμα σωμάτια με σπιν s 1
Δύο διακρίσιμα σωμάτια με σπιν και Σύνδεση της βάσης των ιδιοκαταστάσεων του τετραγώνου και της z συνιστώσας του ολικού σπιν με τη βάση που αποτελείται από τα τανυστικά γινόμενα των καταστάσεων των δύο
μαγνητικό πεδίο τυχαίας κατεύθυνσης
Σπιν 1 μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο τυχαίας κατεύθυνσης 1) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο B B ˆ ˆ ˆ 0xex B0 yey B0 zez, όπου B0 x, B0
Εύρεση των ιδιοτιμών της στροφορμής
Εύρεση των ιδιοτιμών της στροφορμής Χρησιμοποιώντας την άλγεβρα της στροφορμής, θα υπολογίσουμε τις ιδιοτιμές του τετραγώνου της και της -συνιστώσας της. Μπορούμε, ωστόσο, να θέσουμε το πρόβλημα γενικότερα,
μαγνητικό πεδίο παράλληλο στον άξονα x
Σπιν μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο παράλληλο στον άξονα ) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο με κατεύθυνση στα θετικά του άξονα, δηλαδή e,
Η άλγεβρα της στροφορμής
Η άλγεβρα της στροφορμής Στην κλασική μηχανική, η τροχιακή στροφορμή L ενός σωματιδίου είναι L r p (1) όπου r το διάνυσμα θέσης του σωματιδίου και p η ορμή του. Σε καρτεσιανές συντεταγμένες, η (1) γράφεται
ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής
ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής Re Im V r V r i V r, όπου οι συναρτήσεις Re,Im V r V r είναι πραγματικές συναρτήσεις
Δείξτε ότι οι ιδιοκαταστάσεις της ενέργειας του ελεύθερου κβαντικού 2
Δείξτε ότι οι ιδιοκαταστάσεις της ενέργειας του ελεύθερου κβαντικού Jˆ Jˆ Jˆ περιστροφέα με Χαμιλτονιανή Hˆ = x y z και ολική στροφορμή j = x y z είναι οι ιδιοκαταστάσεις των τριών συνιστωσών της στροφορομής
Â. Θέλουμε να βρούμε τη μέση τιμή
ΜΕΣΗ ΤΙΜΗ ΕΝΟΣ ΕΡΜΙΤΙΑΝΟΥ ΤΕΛΕΣΤΗ Έστω ο ερμιτιανός τελεστής Â. Θέλουμε να βρούμε τη μέση τιμή Â μια χρονική στιγμή, που αυθαίρετα, αλλά χωρίς βλάβη της γενικότητας, θεωρούμε χρονική στιγμή μηδέν, όπου
(ταλαντούμενο) μαγνητικό πεδίο τυχαίας κατεύθυνσης Επίλυση με αλλαγή βάσης
Σπιν 1 μέσα σε χρονικά μεταβαλλόμενο (ταλαντούμενο) μαγνητικό πεδίο τυχαίας κατεύθυνσης Επίλυση με αλλαγή βάσης Έστω ηλεκτρόνιο μέσα σε μαγνητικό πεδίο cos B B t, όπου B, και si cose si sie cos e είναι
Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση)
Σύστημα δύο αλληλεπιδρώντων σπιν μέσα σε ομογενές μαγνητικό πεδίο (άσκηση) Δύο σωμάτια με σπιν s και s αντίστοιχα και με τον ίδιο γυρομαγνητικό λόγο τοποθετούνται μέσα σε ομογενές χρονοανεξάρτητο μαγνητικό
Παραμαγνητικός συντονισμός
Παραμαγνητικός συντονισμός B B teˆ teˆ B eˆ, όπου Έστω ηλεκτρόνιο σε μαγνητικό πεδίο cos sin x y z B, B. Θεωρούμε ότι η σταθερή συνιστώσα του μαγνητικού πεδίου, Be, ˆz είναι ισχυρότερη από τη χρονοεξαρτώμενη
1. Μετάπτωση Larmor (γενικά)
. Μετάπτωση Larmor (γενικά) Τι είναι η μετάπτωση; Μετάπτωση είναι η αλλαγή της διεύθυνσης του άξονα περιστροφής ενός περιστρεφόμενου αντικειμένου. Αν ο άξονας περιστροφής ενός αντικειμένου περιστρέφεται
ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ
ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ Έστω â μια παρατηρήσιμη (διανυσματικός τελεστής) με συνεχές φάσμα ιδιοτιμών. Επίσης, έστω ότι t είναι η κατάσταση του συστήματός μας την τυχαία χρονική στιγμή
Δομή Διάλεξης. Ορισμός-Παραδείγματα Τελεστών. Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών. Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών
Τελεστές Δομή Διάλεξης Ορισμός-Παραδείγματα Τελεστών Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών Ερμητειανοί τελεστές Στοιχεία πίνακα τελεστών Μεταθέτες
Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)
TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών
ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC Στέλιος Τζωρτζάκης Ο γενικός φορμαλισμός Dirac 1 3 4 Εικόνες και αναπαραστάσεις Επίσης μια πολύ χρήσιμη ιδιότητα
ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια
, που, χωρίς βλάβη της γενικότητας, μπορούμε να θεωρήσουμε χρονική στιγμή μηδέν, δηλαδή
Η ΚΥΜΑΤΟΣΥΝΑΡΤΗΣΗ ΣΤΗΝ ΑΝΑΠΑΡΑΣΤΑΣΗ ΘΕΣΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ ΟΡΜΗΣ p. Θα βρούμε πρώτα τη σχέση που συνδέει την p με την x. x ΚΑΙ ΣΤΗΝ Έστω η κατάσταση του συστήματός μας μια χρονική στιγμή t 0, που, χωρίς βλάβη
Άσκηση 1. Δείξτε τις σχέσεις μετάθεσης των πινάκων Pauli
Άσκηση 1 Δείξτε τις σχέσεις μετάθεσης των πινάκων Pauli Άσκηση 2 Βρείτε την δράση των τελεστών του spin S x, S y, S z, στις ιδιοκαταστάσεις του S z +1/2>, =1/2> Η αναπαράσταση των S x, S y, S z, στις ιδιοκαταστάσεις
Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική
Spin Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Δομή Διάλεξης Το πείραμα Stern-Gerlach: Πειραματική απόδειξη spin Ο δισδιάστατος χώρος καταστάσεων spin του ηλεκτρονίου: οι πίνακες Pauli Χρονική εξέλιξη
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 8 Νοεμβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 6 Ιανουαρίου 0 Οι ασκήσεις
Κεφάλαιο 7 Ορθογώνιοι Πίνακες
Κεφάλαιο 7 Ορθογώνιοι Πίνακες Εσωτερικό Γινόμενο και ορθογωνιότητα Έστω V ένας διανυσματικός χώρος, υπόχωρος του n. Κάθε συνάρτηση ορισμένη στο VV (την οποία θα συμβολίζουμε με ) ορίζει ένα εσωτερικό γινόμενο
Κβαντική Φυσική Ι. Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac
Κβαντική Φυσική Ι Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι
ˆ ˆ. (τελεστής καταστροφής) (τελεστής δημιουργίας) Το δυναμικό του συστήματός μας (αρμονικός ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι
ΜΟΝΟΔΙΑΣΤΑΤΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΕ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ Ξεκινώντας από τους τελεστές δημιουργίας και καταστροφής
Δηλαδή. Η Χαμιλτονιανή του περιστροφέα μέσα στο μαγνητικό πεδίο είναι
Κβαντικός περιστροφέας που J J J H y z τοποθετείται y z περιγράφεται μέσα σε από τη ομογενές, Χαμιλτονιανή χρονοανεξάρτητο μαγνητικό πεδίο με κατεύθυνση στα θετικά του άξονα z, δηλαδή B B ez, με B >. Αν
Sˆy. Η βάση για την οποία συζητάμε απαρτίζεται από τα ανύσματα = (1) ˆ 2 ± =± ± Άσκηση 20. (βοήθημα θεωρίας)
Άσκηση 0. (βοήθημα θεωρίας) Έστω + και η βάση που συγκροτούν οι (κοινές) ιδιοκαταστάσεις των τελεστών ˆ S και Sˆz ενός σωματίου με spin 1/. Να βρείτε την αναπαράσταση των τελεστών S ˆx, Sˆ και Sˆz στη
8.1 Διαγωνοποίηση πίνακα
Κεφάλαιο 8 Κανονικές μορφές από 6 Κεφάλαιο 8 Κ Α Ν Ο Ν Ι Κ Ε Σ Μ Ο Ρ Φ Ε Σ 8. Διαγωνοποίηση πίνακα Ορισμός 8.α Ένας πίνακας M n ( ) oνομάζεται διαγωνοποιήσιμος στο αν υπάρχει αντιστρέψιμος πίνακας P M
Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής
Τροχιακή Στροφορμή Δομή Διάλεξης Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Ιδιοτιμές και ιδιοκαταστάσεις της L
1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι
ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ
ΚΕΦ:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ Τετραγωνικές μορφές: Συναρτήσεις με τύπο Q ν α ι j j, j [ ] ν α α ν αν α νν ν Τ Χ ΑΧ Για παράδειγμα εάν v Q α + α + α + α α + α + α + α δηλ a a a a α + α + α
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ
Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο
ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ
ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ Ξεκινώντας από τους τελεστές δημιουργίας και καταστροφής
ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Νοεμβρίου 007 Ημερομηνία παράδοσης της Εργασίας: 4 Δεκεμβρίου 007 Πριν από την λύση κάθε άσκησης καλό
Αρμονικός ταλαντωτής Ασκήσεις
Αρμονικός ταλαντωτής Ασκήσεις 4. Αρμονικός ταλαντωτής, τη χρονική στιγμή t, βρίσκεται στην κατάσταση ˆ i e, όπου η βασική κατάσταση του αρμονικού ταλαντωτή, ο τελεστής της ορμής, και η κλίμακα μήκους του
Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017
Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. siroskonstantogiannis@gmail.com 8 Δεκεμβρίου 7 8//7 Coyrigt Σπύρος Κωνσταντογιάννης, 7. Με επιφύλαξη παντός δικαιώματος.
Πανεπιστήμιο Αθηνών Τμήμα Φυσικής
Κβαντομηχανική ΙI Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Α. Καρανίκας και Π. Σφήκας Σημειώσεις IX: Πρόσθεση στροφορμών Υπάρχουν πάμπολα φυσικά συστήματα στα οποία η κίνηση των επί μέρους σωματιδίων ή τα spin
3/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΟ ΣΠΙΝ
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΤΟ ΣΠΙΝ ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ Στέλιος Τζωρτζάκης 1 3 4 Εισαγωγή Η ενδογενής στροφορμή ή αλλιώς σπιν αποτελεί ένα θεμελιώδες χαρακτηριστικό των σωματιδίων διότι
και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1
Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 39 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος
ii) Υπολογίστε τις μέσες τιμές της θέσης και της ορμής του ταλαντωτή όταν t 0.
ΑΣΚΗΣΗ 4 Αρμονικός ταλαντωτής, τη χρονική στιγμή t, βρίσκεται στην κατάσταση ip ˆ x x, όπου η βασική κατάσταση του αρμονικού ταλαντωτή, ˆp x ο τελεστής της ορμής, και η κλίμακα μήκους του αρμονικού ταλαντωτή.
Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα
Ιδιάζουσες τιμές πίνακα Επειδή οι πίνακες που παρουσιάζονται στις εφαρμογές είναι μη τετραγωνικοί, υπάρχει ανάγκη να βρεθεί μία μέθοδος που να «μελετά» τους μη τετραγωνικούς με «μεθόδους και ποσά» που
Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ
Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Χρονικά Ανεξάρτητη Θεωρία Διαταραχών. Τα περισσότερα φυσικά συστήματα που έχομε προσεγγίσει μέχρι τώρα περιγράφονται από μία κύρια Χαμιλτονιανή η οποία
Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί
Κατηγορίες προβλημάτων (σε μια διάσταση) Εισαγωγικές έννοιες Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Το πρόβλημα
Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013
ΘΕΜΑ 1: ( 3 µονάδες ) Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 Ηλεκτρόνιο κινείται επάνω από µία αδιαπέραστη και αγώγιµη γειωµένη επιφάνεια που
Το θεώρημα virial1 στην κβαντική μηχανική
Το θεώρημα val στην κβαντική μηχανική Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. sposkonsanoganns@gal.co 7 Φεβρουαρίου 08 Η λέξη val προέρχεται από το λατινικό vs, που σημαίνει «δύναμη», «ενέργεια», «ισχύς»
Κβαντική Φυσική Ι. Ενότητα 16: Αναπαράσταση τελεστών με μήτρες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 16: Αναπαράσταση τελεστών με μήτρες Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να αναπτύξει την μεθοδολογία εύρεσης ιδιοτιμών
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4
ιαλέξεις Κβαντικής Μηχανικής ΙΙ - Κεφάλαιο 4 Α. Λαχανας 1/ 45 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων ακαδηµαικό
Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα
Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.
2. Αποθήκευση της κβαντικής πληροφορίας
. Αποθήκευση της κβαντικής πληροφορίας Σύνοψη Στο κεφάλαιο αυτό θα περιγραφεί η μονάδα της κβαντικής πληροφορίας που είναι το κβαντικό t (utum t). Θα περιγραφούν φυσικά συστήματα τα οποία μπορούν να χρησιμοποιηθούν
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Τροχιακή Στροφορμή (Ορισμοί Τελεστών) Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα
(φορτισμένος αρμονικός 2 ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι
ΜΟΝΟΔΙΑΣΤΑΤΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΕ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΥΠΟΛΟΓΙΣΜΟΣ ΜΕΣΩΝ ΤΙΜΩΝ ΜΕ ΧΡΗΣΗ ΤΩΝ ΤΕΛΕΣΤΩΝ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ Για μια τυχαία ιδιοκατάσταση της ενέργειας,, υπολογίζουμε
Χαρακτηριστική Εξίσωση Πίνακα
Έστω ο n nτετραγωνικός πίνακας A της μορφής a L a M O M an L a όπου aij, i n, j n πραγματικές σταθερές Ονομάζουμε χαρακτηριστική εξίσωση του πίνακα A την εξίσωση A λi, όπου I ο n n μοναδιαίος πίνακας και
Είναι (1) Έστω (2) Τότε η (1) γράφεται (3) Από την (3) βλέπουμε ότι η y ( x; a ) περιγράφει μια συνοχική κατάσταση μάλιστα
Είναι i ö ö y ( ; ) ç ep ç - ˆ ep ç ( p ø ø ) ö ø () Έστω () Τότε η () γράφεται i ö ö y ( ; ) ç ep ç ep ç - ( - ˆ p ø ø ) ö ø (3) Από την (3) βλέπουμε ότι η y ( ; ) περιγράφει μια συνοχική κατάσταση μάλιστα
Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy
4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των
Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ
Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Στο πρώτο μέρος αυτού του κεφαλαίου συνοψίζουμε όσα είναι απαραίτητα για την εύρεση ιδιοτιμών και ιδιοδιανυσμάτων ενός τετραγωνικού πίνακα Στο δεύτερο μέρος αναπτύσσονται
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 8 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 8 Πριν από την λύση κάθε άσκησης καλό
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Κίνηση σε κεντρικά δυναµικά 1.1.1 Κλασική περιγραφή Η Χαµιλτωνιανή κλασικού συστήµατος που κινείται
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα
Ασκήσεις6 Το σύνηθες εσωτερικό γινόμενο στο
Ασκήσεις6 7 Ασκήσεις6 Το σύνηθες εσωτερικό γινόμενο στο και Βασικά σημεία Το σύνηθες εσωτερικό γινόμενο στο και (ορισμοί και ιδιότητες) Ορθοκανονικές βάσεις και η μέθοδος Gram-Schmidt Ορθογώνιο συμπλήρωμα
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 05 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος
Έντυπο Yποβολής Αξιολόγησης ΓΕ
Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος
1 ιαδικασία διαγωνιοποίησης
ιαδικασία διαγωνιοποίησης Εστω V ένας R-διανυσματικός χώρος (ή έναςc-διανυσματικός χώρος) διάστασης n. Είναι γνωστό ότι κάθε διάνυσμα (,,..., n ) του χώρου V μπορεί να παρασταθεί και σαν πίνακας στήλη
Κεφάλαιο 2 Πίνακες - Ορίζουσες
Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος
Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις
Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου
= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις
1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν
Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Βασικά σημεία της κβαντομηχανικής Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα
Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1
Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1 Μη- Σχετικιστική Κβαντομηχανική Η μη- σχετικιστική έκφραση για την ενέργεια: Στην QM αντιστοιχούμε την ενέργεια και την ορμή με Τελεστές:
Μετασχηματισμοί Καταστάσεων και Τελεστών
Μετασχηματισμοί Καταστάσεων και Τελεστών Δομή Διάλεξης Μετασχηματισμοί Καταστάσεων Τελεστής Μετατόπισης Συνεχείς Μετασχηματισμοί και οι Γεννήτορές τους Τελεστής Στροφής Διακριτοί Μετασχηματισμοί: Parity
Κβαντικές Καταστάσεις
Κβαντικές Καταστάσεις Δομή Διάλεξης Σύντομη ιστορική ανασκόπηση Ανασκόπηση Πιθανότητας Το Πλάτος Πιθανότητας Πείραμα διπλής οπής Κβαντικές καταστάσεις (ket) Ο δυίκός χώρος (bra) Σύνοψη Κβαντική Φυσική
Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα
ΘΕΜΑ 1: Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ Εξετάσεις 1ης Ιουλίου 13 Τµήµα Α. Λαχανά) Α ) Για την πρώτη διεγερµένη κατάσταση του ατόµου του Υδρογόνου µε τροχιακή στροφορµή l = 1 να προσδιορισθουν οι αποστάσεις
Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων
7 Βασικά σημεία Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων Το σύνηθες εσωτερικό γινόμενο στο και Ορθοκανονικές βάσεις και η μέθοδος Gram-Schmidt Ορισμός, Ερμιτιανού πίνακα και μοναδιαίου πίνακα Ιδιότητες
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 3. Σύντομες Λύσεις
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων Γ. Καραγιώργος ykarag@aegean.gr Quiz Σύντομες Λύσεις Άσκηση. Δείξτε ότι η απεικόνιση u, v = u v + 5u v, όπου u = (u, u ), v = (v, v ),
. Να βρεθεί η Ψ(x,t).
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η
+ z, όπου I x, I y, I z είναι οι ροπές αδράνειας
r Έστω κβαντικός περιστροφέας ολικής στροφορμής J, που περιγράφεται από Jx J y J τη Χαμιλτονιανή H = z, όπου I x, I y, I z είναι οι ροπές αδράνειας I x I y I z του περιστροφέα ως προς τους άξονες x,y,z,
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons
Στοχαστικά Σήματα και Τηλεπικοινωνιές
Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 2: Ανασκόπηση Στοιχείων Γραμμικής Άλγεβρας Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Παρουσίαση/υπενθύμιση
21 a 22 a 2n. a m1 a m2 a mn
Παράρτημα Α Βασική γραμμική άλγεβρα Στην ενότητα αυτή θα παρουσιαστούν με συνοπτικό τρόπο βασικές έννοιες της γραμμικής άλγεβρας. Ο στόχος της ενότητας είναι να αποτελέσει ένα άμεσο σημείο αναφοράς και
Κβαντική Μηχανική ΙΙ. Ενότητα 1: Γενική διατύπωση της Κβαντικής Μηχανικής Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Μηχανική ΙΙ Ενότητα 1: Γενική διατύπωση της Κβαντικής Μηχανικής Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 2/ 39 Περιεχόµενα 1ης
(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0
Τρόποι Κατασκευής Εάν οι ιδιοσυναρτήσεις του διαφορικού τελεστή L αποτελούν ένα ορθοκανονικό L ( ) ( ) (7) και πλήρες σύστημα συναρτήσεων ( ) m( ), m (8) και εάν τότε η εξίσωση Gree ( ) ( ) ( ) (9) z ()
Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά
Διάλεξη : Κεντρικά Δυναμικά Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöing για κεντρικά δυναμικά Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 Κεντρικά δυναμικά Εξάρτηση δυναμικού
Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )
vs of Io vs of Io D of Ms Scc & gg Couo Ms Scc ική Θεωλης ική Θεωλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 746 dok@cc.uo.g cs.s.uo.g/dok ομηχ ομηχ δ ά τρεις διαστ Εξίσωση Schödg σε D Σε μία διάσταση Σε τρείς
5.9 ΘΕΤΙΚΑ ΟΡΙΣΜΕΝΟΙ ΠΙΝΑΚΕΣ ΚΑΙ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ
ΠΙΝΑΚΕΣ ΚΑΙ ΓΡΑΜΜΙΚΟΙ ΤΕΛΕΣΤΕΣ Α Β Δ J 1 =A+Γ και J 3 = Β Γ Ε Δ Ε Ζ d + c x + a + b y ac+ bd x y = R A έχουμε: 1 1 1 1 Για την εξίσωση ( ) ( ) ( ) ( ) A, B,, 0, E 0, Z A = c + d = ac+ bd Γ= a + b Δ= =
ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ
ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ) Στο απειρόβαθο πηγάδι με τοιχώματα στα σημεία x, θα υπολογίσουμε τη διασπορά της ενέργειας,, για τη μικτή κατάσταση με 5 x x x 8 μέσα στο πηγάδι
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)
Σχετικιστικές συμμετρίες και σωμάτια
Κεφάλαιο 1 Σχετικιστικές συμμετρίες και σωμάτια 1.1 Η συμμετρία Πουανκαρέ 1.1.1 Βασικοί ορισμοί και ιδιότητες Η θεμελιώδης κινηματική συμμετρία για ένα φυσικό σύστημα είναι η συμμετρία των μετασχηματισμών
Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών.
Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών (βλ ενότητες 8 και 8 από το βιβλίο Εισαγωγή στη Γραμμική Άλγεβρα, Ι Χατζάρας, Θ Γραμμένος, 0) (Δείτε τα παραδείγματα 8 (, ) και
(με ιδιοτιμές 1,0 και 1 αντίστοιχα ) είναι οι. i i i. ui ui u. i Tr u u Tr ˆ Fˆ
Παράδειγμα ( Αφορά στις λεγόμενες μη ορθογώνιες μετρήσεις) Σωματίδιο με spn βρίσκεται στην κατάσταση: a 0 b () όπου 0, και οι ιδιοκαταστάσεις του S ˆz. Έστω ότι θέλετε να μετρήσετε την προβολή του spn
Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων
Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων. Γραμμικοί Μετασχηματισμοί Ανυσμάτων Θεωρούμε χώρο δύο διαστάσεων και συμβατικά ένα ορθογώνιο σύστημα αξόνων για την περιγραφή κάθε ανύσματος του χώρου
1.2 Συντεταγμένες στο Επίπεδο
1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε
ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει
ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις
Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι
Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος. Δείξτε ότι ο V R εφοδιασμένος με τις ακόλουθες πράξεις (, a b) + (, d) ( a+, b+ d) και k ( ab, ) ( kakb,
Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης
Αθανάσιος Χρ. Τζέμος Τομέας Θεωρητικής Φυσικής Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης Στη Φυσική ενδιαφερόμαστε για την δυναμική εξέλιξη των διαφόρων συστημάτων. Καίριο